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Charged particle assisted nuclear reactions in solid state environment:

renaissance of low energy nuclear physics
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The features of electron assisted neutron exchange processes in crystalline solids are surveyed. It
is found that, contrary to expectations, the cross section of these processes may reach an observable
magnitude even in the very low energy case because of the extremely huge increment caused by the
Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features
of electron assisted heavy charged particle exchange processes, electron assisted nuclear capture
processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental
observations, which may be related to our theoretical findings, are dealt with. A possible explanation
of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear
transmutation is qualitatively explained with the aid of usual and charged particle assisted reactions.
The electron assisted neutron exchange processes in pure Ni, Pd and Li−Ni composite systems (in
the Rossi-type E-Cat) are analyzed and it is concluded that the electron assisted neutron exchange
reactions in pure Ni and Li − Ni composite systems may be responsible for recent experimental
observations.
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I. INTRODUCTION

Since the ”cold fusion” publication by Fleischmann
and Pons in 1989 [1] a new field of experimental physics
has emerged. Although even the possibility of the phe-
nomenon of nuclear fusion at low energies is in doubt in
mainstream physics, the quest for low-energy nuclear re-
actions (LENR) flourished and hundreds of publications
(mostly experimental) have been devoted to various as-
pects of the problem. (For the summary of experimen-
tal observations, the theoretical efforts, and background
events see e.g. [2], [3].) The main reasons for revulsion
against the topic according to standard nuclear physics
have been: (a) due to the Coulomb repulsion no nuclear
reaction should take place at energies corresponding to
room temperature, (b) the observed extra heat attributed
to nuclear reactions is not accompanied by the nuclear
end products expected from hot fusion experiences, (c)
traces of nuclear transmutations were also observed, that
considering the repulsive Coulomb interaction is an even
more inexplicable fact at these energies.

Motivated by the observations in the above field we
search for physical phenomena that may have modify-
ing effect on nuclear reactions in solid state environment.
Earlier we theoretically found [4], [5] that if the reaction
p+d→ 3He takes place in solid material then the nuclear
energy is mostly taken away by an electron of the environ-
ment instead of the emission of a γ photon, a result that
calls the attention to the possible role of electrons. Con-
cerning the assistance of the electrons and other charged
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constituents of the solid, a family of electron assisted
nuclear reactions, especially the electron assisted neu-
tron exchange process, furthermore the electron assisted
nuclear capture process and the heavy charged particle
assisted nuclear processes were discussed mostly in crys-
talline solid state (particularly in metal) environment [6],
[7]. The aim of this paper is to summarize our theoretical
findings and on this basis to explain some experimental
observations.
We adopt the approach standard in nuclear physics

when describing the cross section of nuclear reactions.
Accordingly, heavy, charged particles j and k of like pos-
itive charge of charge numbers zj and zk need consid-
erable amount of relative kinetic energy E determined
by the height of the Coulomb barrier in order to let the
probability of their nuclear interaction have significant
value. The cross section of such a process can be derived
applying the Coulomb solution ϕ(r),

ϕ(r) = eik·rf(k, r)/
√
V , (1)

which is the wave function of a free particle of charge
number zj in a repulsive Coulomb field of charge number
zk [8], in the description of relative motion of projectile
and target. In (1) V denotes the volume of normalization,
r is the relative coordinate of the two particles, k is the
wave number vector in their relative motion and

f(k, r) = e−πηjk/2Γ(1 + iηjk)1F1(−iηjk, 1; i[kr − k · r]),
(2)

where 1F1 is the confluent hypergeometric function and Γ
is the Gamma function. Since ϕ(r) ∼ e−πηjk/2Γ(1+iηjk),
the cross section of the process is proportional to
∣∣∣e−πηjk/2Γ(1 + iηjk)

∣∣∣
2

=
2πηjk (E)

exp [2πηjk (E)]− 1
= Fjk(E),

(3)
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the so-called Coulomb factor. Here

ηjk (E) = zjzkαf

√
ajk

m0c2

2E
(4)

is the Sommerfeld parameter in the case of colliding parti-
cles of mass numbersAj , Ak and rest massesmj = Ajm0,
mk = Akm0. m0c

2 = 931.494MeV is the atomic energy
unit, αf is the fine structure constant and E is taken in
the center of mass (CM) coordinate system.

ajk =
AjAk

Aj +Ak
(5)

is the reduced mass number of particles j and k of mass
numbersAj and Ak. Thus the rate of the nuclear reaction
of heavy, charged particles of like positive charge becomes
very small at low energies as a consequence of Fjk(E)
being very small.
In the processes investigated the Coulomb and the

strong interactions play crucial role. The interaction
Hamiltonian HI comprises the Coulomb interaction po-
tential VCb with the charged constituents of surroundings
(solid) and the interaction potential VSt of the strong in-
teraction:

HI = VCb + VSt. (6)

(The Coulomb interaction between the charged partici-
pants of the nuclear reaction is taken into account using
(1).) Therefore the charged particle assisted nuclear re-
actions are at least second order in terms of standard
perturbation calculation. According to (6), the lowest
order of S-matrix element of a charged particle assisted
nuclear reaction has two terms which can be visualized
with the aid of two graphs. However, the contribution by
the term, in which VSt according to chronological order
precedes VCb, is negligible because of the smallness of the
Coulomb factor the root square of which is appearing in
the matrix element of VSt in this case. (In the following
we only depicts the graph of the dominant term.)
When describing the effect of the Coulomb interaction

between the nucleus of charge number Z and a slow elec-
tron one can also use Coulomb function, consequently,
the cross section of the process to be investigated is pro-
portional to

Fe(E) =
2πηe (E)

exp [2πηe (E)]− 1
, (7)

but with

ηe = −Zαf

√
mec2

2E
. (8)

Here me is the rest mass of the electron. In the case of
low (less than 1 keV ) kinetic energy of the electron Fe(E)
reads approximately as Fe(E) = |2πηe (E)| > 1.
For instance, the cross section of electron assisted neu-

tron exchange process (as it will be discussed later, and

the graph of which is depicted in Fig. 1) is proportional
to Fe(E) only (instead of Fjk(E)) since the neutron takes
part in strong interaction and so the corresponding ma-
trix element does not contain Coulomb factor. The in-
crement in the cross section due to changing Fjk(E) for
Fe(E) in the case of electron assisted neutron exchange
process can be characterized by the ratio Fe(E)/Fjk(E)
which is an extremely large number. The cross section
of electron assisted neutron exchange process has a fur-
ther (about a factor 1022) increase due to the presence
of the lattice since the cross section is also proportional
to 1/vc. Here vc ∼ d3 is the volume of the elementary
cell of the solid with d the lattice parameter of order of
magnitude of 10−8 cm. The extremely huge increment in
the Coulomb factor increased further by the effect of the
lattice makes it possible that the cross section of electron
assisted neutron exchange process may reach an observ-
able magnitude even in the very low energy case. Thus
it can be concluded that the actual Coulomb factors are
the clue to the charged particles assisted nuclear reac-
tions and therefore we focus our attention to them espe-
cially concerning the Coulomb factors of heavy charged
particles.
It is worth mentioning, that usual nuclear experiments,

in which nuclear reactions of heavy charged particles are
investigated, are usually devised taking into account the
hindering effect of Coulomb repulsion. Consequently, the
beam energy is taken to be appropriately high to reach
the energy domain where the cross section of the pro-
cesses becomes appropriately large. Therefore in an or-
dinary nuclear experiment the role of charged particle
assisted reactions is not essential.

II. APPLIED METHOD PRESENTED IN
ELECTRON ASSISTED NEUTRON EXCHANGE

PROCESS

Recognizing the possibility and advantage of the assis-
tance of electrons in LENR we consider first the electron
assisted neutron exchange process, namely the

e+ A1

Z1
X + A2

Z2
Y → e′ + A1−1

Z1
X + A2+1

Z2
Y +∆ (9)

reaction [7] (see Fig.1). Here e and e′ denote electron
and ∆ is the energy of the reaction, i.e. the difference

between the rest energies of initial
(
A1

Z1
X +A2

Z2
Y
)

and

final
(
A1−1
Z1

X + A2+1
Z2

Y
)
states.

In (9) the electron (particle 1) Coulomb interacts with

the nucleus A1

Z1
X (particle 2). A scattered electron (par-

ticle 1′), the intermediate neutron (particle 3) and the

nucleus A1−1
Z1

X (particle 2′) are created due to this inter-
action. The intermediate neutron (particle 3) is captured

due to the strong interaction by the nucleus A2

Z2
Y (particle

4) forming the nucleus A2+1
Z2

Y (particle 5) in this man-

ner. All told, in (9) the nucleus A1

Z1
X (particle 2) looses a
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FIG. 1: The graph of electron assisted neutron exchange pro-
cess. Particle 1 (and 1’) is an electron, particle 2 is a nucleus
which looses a neutron and becomes particle 2’. Particle 3
is an intermediate neutron. Particle 4 is the nucleus which
absorbs the neutron and becomes particle 5. The filled dot
denotes Coulomb-interaction and the open circle denotes nu-
clear (strong) interaction.

neutron which is taken up by the nucleus A2

Z2
Y (particle

4). The process is energetically forbidden if ∆ < 0. It
was found, as it will be seen later, that the electron takes
away negligible energy. In this process the Coulomb fac-
tor of electrons arises only since the particle, which is
exchanged, is a neutron.
The physical background to the virtual neutron strip-

ping due to the Coulomb interaction is worth mention-
ing. The attractive Coulomb interaction acts between
the Z1 protons and the electron. The neutrons do not
feel Coulomb interaction. So one can say that in fact
the nucleus A1−1

Z1
X is stripped of the neutron due to the

Coulomb attraction.
As an example we take Ni and Pd as target material.

It is thought that the metal (Ni or Pd) is irradiated with
slow, free electrons. In this case reaction (9) reads as

e+ A1

Z X + A2

Z X → e′ + A1−1
Z X + A2+1

Z X +∆ (10)

with Z = Z1 = Z2.
Now we demonstrate our calculation. Let us take a

solid (in our case a metal) which is irradiated by a mo-
noenergetic beam of slow, free electrons. The correspond-
ing sub-system Hamiltonians are Hsolid and He. It is
supposed that their eigenvalue problems are solved, and
the complete set of the eigenvectors of the two indepen-
dent systems are known. The interaction between them
is the Coulomb interaction of potential V Cb (x) and the
other interaction that is taken into account between the
nucleons of the solid is the strong interaction potential
V St (x). In the second order process investigated an elec-
tron takes part in a Coulomb scattering with an atomic
nucleus of the solid. In the intermediate state a virtual
free neutron n is created which is captured due to the
strong interaction with some other nucleus of the solid.
The reaction energy ∆ is shared between the quasi-free
final electron and the two final nuclei which take part in
the process. Since the aim of this paper is to show the
fundamentals of the main effect, the simplest description
is chosen.
The electron of charge −e and the nucleus A1

Z X of
charge Ze take part in Coulomb-interaction. We use a

screened Coulomb potential of the form

V Cb (x) = −Ze
2

2π2

∫
1

q2 + λ2
exp (iq · x) dq (11)

with screening parameter λ and coupling strength e2 =
αf~c. For the strong interaction the interaction potential

V St (x) = −f exp (−s |x|)|x| (12)

is applied, where the strong coupling strength f = 0.08~c
[9] and 1/s is the range of the strong interaction. (~ is
the reduced Planck constant, c is the velocity of light and
e is the elementary charge.)
According to the standard perturbation theory of

quantum mechanics the transition probability per unit
time (Wfi) of this second order process can be written
as

Wfi =
2π

~

∑

f

|Tfi|2 δ(Ef − Ei −∆) (13)

with

Tfi =
∑

µ

V St
fµV

Cb
µi

∆Eµi
. (14)

Here V Cb
µi is the matrix element of the Coulomb potential

between the initial and intermediate states and V St
fµ is the

matrix element of the potential of the strong interaction
between the intermediate and final states, furthermore

∆Eµi = Eµ − Ei −∆iµ. (15)

Ei, Eµ and Ef are the kinetic energies in the initial, in-
termediate and final states, respectively, ∆ is the reaction
energy, and ∆iµ is the difference between the rest energies

of the initial
(
A1

Z X
)

and intermediate
(
A1−1
Z X and n

)

states.

∆ = ∆− +∆+, ∆iµ = ∆− −∆n (16)

with

∆− = ∆A1
−∆A1−1 and ∆+ = ∆A2

−∆A2+1. (17)

∆A1
, ∆A1−1, ∆A2

, ∆A2+1 and ∆n are the energy excesses
of the neutral atoms of mass numbers A1, A1 − 1, A2,
A2 + 1 and the neutron, respectively. [10]. The sum
of initial kinetic energies (Ei) is neglected in the energy
Dirac-delta δ(Ef − Ei −∆) and ∆Eµi further on.
Now for the sake of simplicity we reindex the particles.

Particle indexed with e is the electron, particle indexed
with 1 is initially the nucleus A1

Z X (particle 2 in Fig. 1)

and finally A1−1
Z X (particle 2’ in Fig. 1), particle indexed

with 2 is initially the nucleus A2

Z X (particle 4 in Fig. 1)

and finally A2+1
Z X (particle 5 in Fig. 1).

Ef = Efe (kfe) + Ef1 (k1) + Ef2 (k2) , (18)
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Eµ = Efe (kfe) + Eµ1 (k1) + En (kn) , (19)

where

Efj (kj) =
~
2k2

j

2mj
(20)

is the kinetic energy, kfj ≡ kj is the wave vector and
mj is the rest mass of particle indexed with j in the final
state (j = 1, 2).

En (kn) =
~
2k2

n

2mn
(21)

is the kinetic energy, kn is the wave vector in the inter-
mediate state and mn is the rest mass of the neutron.
Eµ1 (k1) is the kinetic energy of the first particle in the
intermediate state, and Eµ1 (k1) = Ef1 (k1). The kinetic
energy of the electron in the initial and final state

Eie =
~
2k2

ie

2me
and Efe =

~
2k2

fe

2me
(22)

with kie and kfe denoting the wave vector of the electron
in the initial and final state. The initial wave vectors ki1

and ki2 of particles 1 and 2 are neglected. The initial,
intermediate and final states are determined in Appendix
A., the V Cb

µi , V St
fµ matrix-elements are calculated in Ap-

pendix B. and the transition probability per unit time
is calculated in Appendix C.. (Appendix D. is devoted
to the approximations, identities and relations which are
used in the calculation of the cross section.)

A. Cross section of electron assisted neutron
exchange process

The cross section σ of the process can be obtained from
the transition probability per unit time (75) dividing it
by the flux ve/V of the incoming electron where ve is
the velocity of the electron.

σ =

∫
c

ve

α2
f~cZ

2
∑l2=m2

l2=−m2
|F2 (k2)|2

π3vc

(
|k1 + k2|2 + λ2

)2
(∆Eµi)

2
kn=k2

(23)

× Fe(Eie)

Fe(Ef1)

〈
|F1 (k2)|2

〉
A2

2rA2
δ(Ef −∆)d3k1d

3k2,

where vc is the volume of elementary cell in the solid, rA2

is the relative natural abundance of atoms A2

Z X ,

F1 (k2) =

∫
Φi1 (rn1) e

−ik2
A1

A1−1
·rn1d3rn1, (24)

〈
|F1 (k2)|2

〉
=

1

2l1 + 1

l1=m1∑

l1=−m1

|F1 (k2)|2 (25)

and

F2 (k2) =

∫
Φ∗

f2 (rn2) e
ik2·rn2 × (26)

×
(
−f

exp(−sA2+1
A2

rn2
A2+1
A2

rn2

)
d3rn2.

Here Φi1 and Φf2 are the initial and final bound neu-
tron states (for the definition of l1 and l2 see below).
The cross section calculation result that the k2 ≃ k0 =√
2µ12∆/~ substitution may be used (see in Appendix

D.) in calculating F1 and F2 in σ, where µ12 = m0

[(A1 − 1) (A2 + 1)] / (A1 +A2).
When evaluating (23) first the Weisskopf approxima-

tion is applied, i.e. for the initial and final bound neu-
tron states we take ΦW (rnj) = φjW (rnj) Yljmj

(Ωj) ,
j = 1, 2 where Yljmj

(Ωj) is a spherical harmonics and

φjW (rnj) =
√
3/R3

j , j = 1, 2 if |rnj | ≤ Rj and

φjW (rnj) = 0 for |rnj | > Rj , where Rj = r0A
1/3
j is

the radius of a nucleus of nucleon number Aj with
r0 = 1.2× 10−13 cm. We apply the A1 ≃ A2 ≃ A1 − 1 ≃
A2 + 1 = A approximation further on. Calculating
F1 (k0) and F2 (k0) the long wavelength approximations
(LWA) (exp (−ik0 · rn1) = 1 and exp (ik0 · rn2) = 1) are
also used with s = 1/r0 that result approximately

〈
|F1 (k0)|2

〉 l2=m2∑

l2=−m2

|F2 (k0)|2 = 16π2r40f
2 (2l2 + 1) .

(27)
Using the results of Appendix D., the Ef1 = ∆/2
relation and if Ee < 0.1 MeV (i.e. if Fe(Eie) =

|2πηe (Eie)| = 2πZαf

√
mec2/2Eie) then the cross sec-

tion in the Weisskopf-LWA approximation reads as

σW =
CW0 (2l2 + 1)
[
1 + 2(∆n−∆−)

A∆

]2
rA2

Fe(∆/2)

A3/2Z2

∆3/2Eie
(28)

with CW0 = 29π3α3
f (0.08)

2
aBr0

(
r0
d

)3 (
m0c

2
)3/2

mec
2.

Here aB is the Bohr-radius, the relation c/ve =√
mec2/ (2Eie) with Eie the kinetic energy of the in-

going electrons is also applied and d = 3.52 × 10−8

cm (Ni lattice) and d = 3.89 × 10−8 cm (Pd lattice).
Fe(∆/2) is determined by (7) and (8). The subscript
W refers to the Weisskopf-LWA approximation and in
(28) the quantities ∆ and Eie have to be substituted
in MeV units. CW0 (Ni) = 1.4 × 10−14 MeV 5/2b and
CW0 (Pd) = 1.1× 10−14 MeV 5/2b.

We have calculated
∑l2=m2

l2=−m2
|F2 (k0)|2,

〈
|F1 (k0)|2

〉

and the cross section in the single particle shell model
with isotropic harmonic oscillator potential and without
the long wavelength approximation (see Appendix E.).
We introduce the ratio

η =

〈
|F1 (k0)|2

〉

Sh

∑l2=m2

l2=−m2
|F2 (k0)|2Sh

〈
|F1 (k0)|2

〉

W

∑l2=m2

l2=−m2
|F2 (k0)|2W

. (29)
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A 58 60 61 62 64
∆− −4.147 −3.317 0.251 −2.526 −1.587
∆+ 0.928 −0.251 2.526 −1.234 −1.973
rA 0.68077 0.26223 0.0114 0.03634 0.00926

TABLE I: Numerical data of the e+ A1

28 Ni+ A2

28 Ni → e′ +
A1−1

28 Ni+ A2+1

28 Ni+∆ reaction. The reaction is energetically
allowed if ∆ = ∆−(A1) + ∆+(A2) > 0 holds. A is the mass
number, rA is the relative natural abundance, ∆−(A) = ∆A−
∆A−1 and ∆+(A) = ∆A −∆A+1 are given in MeV units.

(The subscript Sh refers to the shell model.) With the
aid of η ≡ ηl1,n1,l2,n2

(A1, A2) given by (93) (see Ap-
pendix E.) the cross section σSh calculated in the shell
model can be written as

σSh = ηl1,n1,l2,n2
(A1, A2)σW . (30)

B. Yield of events of electron assisted neutron
exchange process

The yield dN/dt of events of electron assisted neutron
exchange process A1, A2 → A1−1, A2+1 can be written
as

dN

dt
= NtNniσΦ, (31)

where σ = {σW or σSh}, Φ is the flux of electrons, Nt is
the number of target particles, i.e. the number NA1

of
irradiated atoms of mass number A1 in the metal. The
contribution of Nni neutrons in each nucleus A1

Z X is also
taken into account. Nni is the number of neutrons in
the uppermost energy level of the initial nucleus A1

Z X . If
F and D are the irradiated surface and the width of the
sample, respectively, then the number of elementary cells
Nc in the sample is Nc = FD/vc = 4FD/d3 in the case of
Ni and Pd, and the number of atoms in the elementary
cell is 2rA1

with rA1
the relative natural abundance of

atoms A1

Z X thus the number Nt of target atoms of mass
number A1 in the process is

Nt =
8

d3
rA1

FD. (32)

The wave numbers and energies of the two outgoing
heavy particles are approximately k1 = −k2,

E1 =
A2 + 1

A1 +A2
∆ and E2 =

A1 − 1

A1 +A2
∆. (33)

C. Numerical data of electron assisted neutron
exchange processes in Ni and Pd

As a first example we take Ni as target material. In
this case the possible processes are

e+ A1

28 Ni+
A2

28Ni→ e′+ A1−1
28 Ni+ A2+1

28 Ni+∆. (34)

A 102 104 105 106 108 110
∆− −2.497 −1.912 0.978 −1.491 −1.149 −0.747
∆+ −0.446 −0.978 1.491 −1.533 −1.918 −2.320
rA 0.0102 0.1114 0.2233 0.2733 0.2646 0.1172

TABLE II: Numerical data of the e+ A1

46 Pd+A2

46 Pd → e′ +
A1−1

46 Pd+A2+1

46 Pd+∆ reaction. The reaction is energetically
allowed if ∆ = ∆−(A1) + ∆+(A2) > 0 holds. A is the mass
number, rA is the relative natural abundance, ∆−(A) = ∆A−
∆A−1 and ∆+(A) = ∆A −∆A+1 are given in MeV units.

A1 → A1 − 1 A2 → A2 + 1 ∆(MeV) η

61 → 60 58 → 59 1.179 7.02× 10−3

61 → 60 61 → 62 2.777 2.42× 10−8

64 → 63 61 → 62 0.939 2.08× 10−4

TABLE III: The values of the quantities η and ∆ = ∆−(A1)+

∆+(A2) > 0, the later in MeV units, of the e + A1

28 Ni +
A2

28 Ni → e′ + A1−1

28 Ni+ A2+1

28 Ni+∆ reaction. The ∆−(A1)
and ∆+(A2) values can be found in Table I. For the definition
of η see (29) and (93).

Tables I. and III. contain the relevant data for reaction
(34). Describing neutrons in the uppermost energy level
of A28Ni isotopes we used 1p shell model states in the cases
of A = 58− 60 and 0f shell model states in the cases of
A = 61− 64.
Another interesting target material is Pd in which the

electron assisted neutron exchange processes are the

e+ A1

46 Pd+
A2

46 Pd→ e′+ A1−1
46 Pd+ A2+1

46 Pd+∆ (35)

reactions. The relevant data can be found in Tables
II. and IV.. Describing neutrons in the uppermost
energy level of A

46Pd isotopes we used 0g shell model
states in the cases of A = 102 − 104 and 1d shell
model states in the cases of A = 105 − 108. The nu-
clear data to the Tables are taken from [10]. One can
see from Tables III. and IV. that in both cases three
possible pairs of isotopes exist which are energetically
allowed (for which ∆ > 0) and their rates differ in
the factor (2l2 + 1)Nniηl1,n1,l2,n2

(A1, A2) rA1
rA2

∆−3/2

only. The η ≡ ηl1,n1,l2,n2
(A1, A2) values of Ni and

A1 → A1 − 1 A2 → A2 + 1 ∆(MeV) η

105 → 104 102 → 103 0.532 1.84× 10−4

105 → 104 105 → 106 2.469 8.88 × 10−11

108 → 107 105 → 106 0.342 2.82× 10−3

TABLE IV: The values of the quantities η and ∆ = ∆−(A1)+

∆+(A2) > 0, the later in MeV units, of the e + A1

46 Pd +A2

46

Pd → e′+ A1−1

46 Pd+A2+1

46 Pd+∆ reaction. The ∆−(A1) and
∆+(A2) values can be found in Table II. For the definition of
η see (29) and (93).
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Pd can also be found in Tables III. and IV., re-
spectively. The results of numerical investigation of
(2l2 + 1)Nniηl1,n1,l2,n2

(A1, A2) rA1
rA2

∆−3/2 shows that
the 61 → 60, 58 → 59 and the 108 → 107, 105 → 106
reactions are the dominant among the processes in Ni
and Pd, respectively.
In the case of Ni it is found that the

e+ 61
28Ni+

58
28Ni→ e′+ 60

28Ni+
59
28Ni+1.179 MeV (36)

process of σSh = 0.088/Eie µb with Eie in MeV is lead-
ing. In this case the 60

28Ni and the 59
28Ni isotopes take

away 0.585 MeV and 0.594 MeV , respectively. In the
case of Pd the

e+ 108
46 Pd+

105
46 Pd→ e′+ 107

46 Pd+
106
46 Pd+0.342 MeV

(37)
reaction of σSh = 0.26/Eie µb with Eie in MeV is found
to be the leading one. In this case the 107

46 Pd and the
106
46 Pd isotopes take away 0.170 MeV and 0.172 MeV ,
respectively.

III. OTHER RESULTS - OTHER CHARGED
PARTICLE ASSISTED REACTIONS

The transition probability per unit time and the cross
section of the processes, which will be discussed below,
may be determined in similar manner as was done above
in the case of electron assisted neutron exchange process.
The main difference is that in matrix elements V Cb

µi and

V St
fµ different Coulomb factors appear according to the

particles which take part in the reaction.

A. Electron assisted heavy charged particle
exchange process

There is an other possibility in the family of electron
assisted exchange processes, when a charged heavy par-
ticle (such as p, d, t, 3

2He and 4
2He) is exchanged. The

process is called electron assisted heavy charged particle
exchange process and it can be visualized with the aid of
Fig.1 too. Denoting the intermediate particle (particle 3
in Fig. 1) by A3

z3 w, which is exchanged, the general elec-
tron assisted heavy charged particle exchange processes
reads as

e+ A1

Z1
X+ A2

Z2
Y → e′+ A1−A3

Z1−z3
X∗+ A2+A3

Z2+z3
Y ∗+∆. (38)

Here e and e′ denote electron and ∆ is the energy of the
reaction, i.e. the difference between the rest energies of

initial
(
A1

Z1
X +A2

Z2
Y
)

and final
(
A1−A3

Z1−z3
X∗ + A2+A3

Z2+z3
Y ∗

)

states. ∆ = ∆− + ∆+, with ∆− = ∆A1

Z1
−∆A1−A3

Z1−z3
and

∆+ = ∆A2

Z2
−∆A2+A3

Z2+z3
. ∆A1

Z1
, ∆A1−A3

Z1−z3
, ∆A2

Z2
, ∆A2+A3

Z2+z3
are

the energy excesses of neutral atoms of mass number-
charge number pairs A1, Z1; A1 − A3, Z1 − z3; A2, Z2;
A2 +A3, Z2 + z3, respectively [10].

FIG. 2: The graph of electron assisted nuclear capture reac-
tions. The simple lines represent free (initial (1) and final (1’))
electrons. The doubled lines represent free, heavy, charged
initial (2) particles (such as p, d), their intermediate state
(2’), target nuclei (3) and reaction product (4). The filled
dot denotes Coulomb-interaction and the open circle denotes
nuclear (strong) interaction.

In (38) the electron (particle 1) Coulomb interacts with

the nucleus A1

Z1
X (particle 2). A scattered electron (par-

ticle 1′), the intermediate particle A3
z3 w (particle 3) and

the nucleus A1−A3

Z1−z3
X∗ (particle 2′) are created due to this

interaction. The intermediate particle A3
z3 w (particle 3)

is captured due to the strong interaction by the nucleus
A2

Z2
Y (particle 4) forming the nucleus A2+A3

Z2+z3
Y ∗ (particle

5) in this manner. So in (38) the nucleus A1

Z1
X (parti-

cle 2) looses a particle A3
z3 w which is taken up by the

nucleus A2

Z2
Y (particle 4). The process is energetically

forbidden if ∆ < 0. Since particles 2′, 3 and 4 all have
positive charge, furthermore they all are heavy, the two
Coulomb factors, which appear in the cross section, are
F2′3 and F34. Therefore the cross section of process (38)
is expected to be much smaller than the cross section of
process (9). However process (38) may play an essential
role in explaining nuclear transmutations stated [3] (see
below). Since Coulomb factors F2′3 and F34 determine
the order of magnitude of the cross section of the pro-
cess (the cross section of the process is proportional to
F2′3F34) we treat them in more detail in Appendix F.

B. Electron assisted nuclear capture process

Now the electron assisted nuclear caption process (see
Fig. 2) is considered, in which an electron-nucleus
Coulomb scattering is followed by a capture process gov-
erned by strong interaction [6]. When describing the ef-
fect of the Coulomb interaction between the nucleus of
charge number Z and a slow electron one can also use the
Coulomb factor Fe(E) (7) of the electron defined above.
As an example we consider the electron assisted d+d→

4
2He process with slow deuterons. In this case, one of the
slow deuterons (as particle 2) can enter into Coulomb
interaction with a quasi-free, slow electron (as particle
1) of the solid (see Fig. 2). In Coulomb scattering
of free deuterons and electrons the wave number vec-
tor (momentum) is preserved since their relative mo-
tion may be described by a plane wave which is mul-
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FIG. 3: The graph of heavy particle assisted nuclear capture
reactions. The lines 1, 1’ represent free (initial (1) and fi-
nal (1’)) heavy particle which assists the reaction. The other
lines represent heavy, charged initial (2) particles, their in-
termediate state (2’), target nuclei (3) and reaction product
(4). The filled dot denotes Coulomb-interaction and the open
circle denotes nuclear (strong) interaction.

tiplied by the corresponding Coulomb factor. In this sec-
ond order process the Coulomb interaction is followed by
strong interaction, which induces a nuclear capture pro-
cess. The energy ∆ of the nuclear reaction is divided be-
tween the electron and the heavy nuclear product. Since
mN ≫ me (mN is the rest mass of the nuclear product),
the electron will take almost all the total nuclear reac-
tion energy ∆ away (there is no gamma emission) and
the magnitude k1′ of its wave number vector k1′ reads
k1′ =

√
∆2 + 2mec2∆/ (~c) ≃ ∆/ (~c)

(
if ∆ ≫ mec

2
)
. If

initially the electron and the deuteron move slowly and
the magnitudes of their wave number vectors are much
smaller than ∆/ (~c), then the initial wave number vec-
tors can be neglected in the wave number vector (momen-
tum) conservation and consequently, in the intermediate
state (in state 2′) the deuteron gets a wave number vec-
tor k2′ = −k1′ . If ∆ = 23.84MeV , which is the reaction
energy of the d+d→ 4

2He reaction, then the deuteron 2′

will have k2′ = ∆/ (~c) and its corresponding (virtual) ki-
netic energy E2′ = ∆2/

(
4m0c

2
)
= 76.5 keV in the CM

coordinate system. At this energy the Coulomb factor
value between particles 2′and 3 reads as F2′3 = 0.103.
It must be compared to the extremely small Coulomb
factor value, e.g. in the case of energy E = 1 eV to
F23 (1 eV ) = 1.1 × 10−427, that is characteristic of the
usual, first order process. If one compares again the cross
sections of second order and first order (electron assisted
and usual) processes then their ratio is approximately
proportional to FeF2′3/F23(E) that becomes extremely
large with decreasing E too. (The model and the de-
tails of calculation, the results and their discussion can
be found in [6].) The cross section of the electron assisted
neutron exchange process is expected to be larger than
the cross section of electron assisted nuclear capture pro-
cess because of the appearance of the Coulomb factor in
it.

FIG. 4: The graph of heavy particle assisted heavy charged
particle (such as p, d, t, 3

2He and 4
2He) exchange reaction.

The lines 1, 1’ represent free (initial (1) and final (1’)) heavy
particle which assists the reaction. The other lines repre-
sent heavy, charged initial nuclei (2), their final state (2’,
which is a nucleus lost particle 3), the transferred particle
(3), target nuclei (4) and reaction product (5). The filled
dot denotes Coulomb-interaction and the open circle denotes
nuclear (strong) interaction.

C. Heavy particle assisted nuclear processes

In electron assisted nuclear reactions heavy, charged
particles of energy of a few MeV may be created. In the
decelerating process of reaction products of the electron
assisted processes the energy of these heavy particles may
become intermediately low (of about 0.01 [MeV ]) so their
Coulomb factor, if the particles are light, may be inter-
mediately small so their assistance in nuclear processes
have to be also considered among the accountable nuclear
processes. The corresponding graphs can be seen in Fig.
3 and Fig. 4. Fig. 3 depicts a heavy, charged particle
assisted nuclear capture process and Fig. 4 represents
heavy, charged particle assisted heavy charged particle
(such as p, d, t, 3

2He and 4
2He) exchange reaction. Now

all particles are heavy. According to the applied nota-
tion, particles 2′, 3 (in Fig. 3) and particles 3, 4 (in Fig.
4) take part in a nuclear process and particle 1 only as-
sists it. The different processes will be distinguished by
the type of the assisting particle and also by the type of
the nuclear process. In our model charged, heavy parti-
cles, such as protons (p), deuterons (d) may be particle
1, which are supposed to move freely in a solid (e.g. in
a metal). The other particles, that may take part in the
processes are: localized heavy, charged particles (bound,
localized p, d and other nuclei) as the participants of
Coulomb scattering (with particle 1) and localized heavy,
charged particles (bound, localized p, d and other nuclei)
as nuclear targets (as particle 3 in Fig. 3 and particle
4 in Fig. 4). The problem, that there may be identical
particles in the system that are indistinguishable, is also
disregarded here.
The calculation of the transition probability per unit

time of the process can be performed through similar
steps to those applied for the calculation of the rate of
an electron assisted process. The main difference is that
now particle 1 is heavy. In order to show the capability of
the heavy particle assisted nuclear processes, some cases
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of the proton assisted proton captures

p+ A
ZX + p→ A+1

Z+1Y + p′ +∆ (39)

were investigated in Appendix III. (Ch. IX.) of [6].

IV. DISCUSSION - ANALYSIS OF
EXPERIMENTAL OBSERVATIONS

A. Fleischmann-Pons experiment

In the experiment of [1] Pd was filled with deuterons
during electrolysis. The electrolyte had LiOD content
too. Two types of electron assisted neutron exchange
processes with Pd nuclei are possible:

e+ d+A
46 Pd→ e′ + p+A+1

46 Pd+∆ (40)

with ∆ = ∆−(d) + ∆+(A) and

e+7
3 Li+

A
46 Pd→ e′ +6

3 Li+
A+1
46 Pd+∆ (41)

with ∆ = ∆−(Li) + ∆+(A) (the ∆+(A) values can be
found in Table III). ∆−(d) = ∆d − ∆p = 5.847 MeV
and ∆−(Li) = ∆(73Li) − ∆(63Li) = 0.821 MeV are the
energies of neutron loss of d and 7

3Li, where ∆d, ∆p,
∆(73Li) and ∆(63Li) are the mass excesses of deuteron,
proton, 7

3Li and
6
3Li, respectively. In reactions (40) and

(41) electrons of the metal are particle 1, d and 7
3Li are

particle 2 and A
46Pd appears as particle 4 (see Fig. 1).

Reaction (40) is energetically allowed for all the natural
isotopes of Pd since ∆ = ∆−(d)+∆+(A) > 0 for each A
(see the ∆+(A) values of Table II). In the case of reaction
(41) the ∆ = ∆−(Li) + ∆+(A) > 0 condition holds at
A = 102 and A = 105 resulting ∆ = 0.375 MeV and
∆ = 2.312 MeV , respectively.
However, at the Pd surface other types of electron as-

sisted neutron exchange processes with d and Li nuclei
of the electrolyte and d solved in Pd are possible:

e+ d+ d→ e′ + p+ t+∆, (42)

e+ d+ d→ e′ + n+ 3
2He+∆, (43)

e+ d+ 6
3Li→ e′ + p+ 7

3Li+∆, (44)

e+ d+ 6
3Li→ e′ + 242He+∆, (45)

e+ d+ 7
3Li→ e′ + 242He+ n+∆ (46)

and

e+ d+ 7
3Li→ e′ + 8

4Be+ n+∆, (47)

which is promptly followed by the decay 8
4Be → 242He

(Γα = 6.8 eV ). In these reactions electrons of the metal
are particle 1 and d is particle 2.

In reaction (40) protons of energy up to 7.269 MeV
and in reaction (41) 6

3Li particles of maximum energy
2.189 MeV are created which may enter into usual nu-
clear reactions with the nuclei of deuteron loaded Pd and
electrolyte which are (without completeness): the usual
pd→ 3

2He+ γ reaction,

p+7
3 Li→ 242He+Q with Q = ∆+ Ekin(p), (48)

6
3Li+ d→ 242He+Q with Q = ∆+ Ekin(Li), (49)

6
3Li+ d→ p+7

3 Li+Q with Q = ∆+ Ekin(Li). (50)

In (48) and (49) the emitted 4
2He has energy E4He >

8.674 MeV and E4He > 11.186 MeV , and in (50) the
created p and 7

3Li have energy Ep > 4.397 MeV and
E7Li > 0.628 MeV , respectively. It can be seen that in
(48) and (49) 4

2He is produced. The 7
3Li particles may

enter into reaction

7
3Li+ d→ 242He+ n+Q with Q = ∆+ Ekin(Li) (51)

which contributes to the 4
2He production too. Here and

above Ekin(p) and Ekin(Li) are the kinetic energies of
the initial protons, 6

3Li and
7
3Li isotopes.

From the above one can see that at least twelve types
of reactions (altogether 18 reactions) exist which are ca-
pable of energy production and in half of them energy
production is accompanied with 4

2He production. It is
reasonable that reactions (40) and (41) have the high-
est rate in the above list of reactions. In the majority
of the above reactions charged particles, mostly heavy
charged particles are created with short range and so
they loose their energy in the matter of the experimental
apparatus mainly in the electrode (cathode) and the elec-
trolyte, therefore their direct observation is difficult. It is
mainly heat production, which is a consequence of decel-
eration in the matter of the apparatus, that can be expe-
rienced. The third of the processes, mainly the secondary
processes are the sources of neutron emission. X- and
γ−rays may be originated mainly from bremsstrahlung.
The above reasoning tallies with experimental observa-
tions.
In reactions (40)− (51) heavy, charged particles of ki-

netic energy lying in the MeV range are created which
are able to assist nuclear reactions. One can obtain the
possible heavy charged particles assisted reactions if in
reactions (40) − (47) the electron is replaced by heavy
charged particles (p, t, 3

2He,
4
2He,

6
3Li,

7
3Li,

8
4Be and

A+1
46 Pd with A = 102, 104− 106, 108, 110) which are cre-
ated in reactions (40)−(51). Since the number of possible
heavy charged particles is 13 and the number of reac-
tions which may be assisted by them is 8, at least 104
heavy charged particle assisted reactions must be taken
into account. Consequently, it is a rather great theoreti-
cal challenge and task to determine precisely the relative
rates and their couplings of all the accountable reactions,
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a work which is, nevertheless, necessary for the accurate
quantitative analysis of experiments.
The relative rates of coupled reactions of many types

depend significantly on the geometry, the kind of matter
and other parameters of the experimental apparatus and
on some further variables, which may be attached to a
concrete experiment. This situation may be responsible
for the diversity of the results of experiments, which are
thought to have been carried out with seemingly in the
same circumstances.

B. Nuclear transmutation

As to the phenomenon of nuclear transmutation [3] we
demonstrate its possibility only. First let us see the possi-
bility of normal reactions. For instance in a Fleischmann-
type experiment 6

3Li particles of energy up to 2.189MeV
are created in reaction (41) so the reaction

6
3Li+

6
3 Li→12

6 C + γ +Q (52)

may have minor, but measurable probability. Here Q =
∆+ Ekin(Li).
The Coulomb factor of reaction (52) is FLi,Li = 1.71×

10−3 at 2.189 MeV kinetic energy of 6
3Li particles. The

magnitude of the Coulomb factor indicates that the rate
of reaction (52) may be large enough to be able to pro-
duce carbon traces in observable quantity.
Moreover, in reactions (40) and (41) free A

46Pd particles
are created offering e.g. the possibility of the

e+A1

46 Pd+
A2

46 Pd→ e′ +A1−3
44 Ru+A2+3

48 Cd+∆ (53)

electron assisted 3
2He exchange process. The electron and

the other Pd particle are in the solid. Analyzing mass
excess data [10] it was found that e.g. the e+103

46 Pd+111
46

Pd→ e′+100
44 Ru+114

48 Cd+∆ 3
2He exchange process has

reaction energy ∆ = 5.7305 MeV . [10346 Pd and 111
46 Pd are

produced in reaction (40).] Calculating the F2′3 = F34

Coulomb factors taking A = 100, Z = 46, A3 = 3, z3 = 2
in (103) one gets F2′3F34 = 2.5 × 10−12 which seems to
be large enough number to produce Cd and Ru traces in
an experiment lasting many days long.
The above reactions may offer starting point for the

explanation of nuclear transmutations.

C. Rossi-type reactor (E-cat)

Recently the Rossi-type reactor [11] (E-Cat) was ex-
perimentally investigated in detail [12]. The fuel con-
tained mostly Ni and also Li in accountable measure,
there was 0.011g Li in 1 g fuel. The isotope composi-
tion of the unused fuel was equal to the relative natural
abundances. But the isotope composition of the ash (the
fuel after 32 day run of the reactor) strongly changed.
(The measured relative abundances of Li and Ni iso-
topes in fuel and ash can be seen in Table V. The natu-
ral abundances are also given for comparison. The data

Isotope Fuel Ash Natural

6
3Li 0.086 0.921 0.075
7
3Li 0.914 0.079 0.925
58
28Ni 0.67 0.008 0.681
60
28Ni 0.263 0.005 0.262
61
28Ni 0.019 0.000 0.018
62
28Ni 0.039 0.987 0.036
64
28Ni 0.01 0 0.009

TABLE V: Measured relative abundances of Li and Ni iso-
topes in fuel and ash. The natural relative abundances are
also given for comparison. The data are taken from [12].

are taken from Appendix 3. of [12].) One can see that
the 62

28Ni isotope is enriched and the other Ni isotopes
are depleted. Furthermore, the relative 7

3Li content de-
creased from 0.917 to 0.079 while the relative 6

3Li content
increased from 0.086 to 0.921.
The reactor worked for about ten days at temperature

T1 = 1533 K and the remaining time at temperature
T2 = 1673 K. At these temperatures a free electron gas
may be created from the Ni powder of the fuel due to
the termionic emission process. The emitted flux of elec-
trons can be determined from the current density of elec-
trons according to the Richardson’s law using the work
function U = 5.24 eV of Ni. The obtained termionic
electron fluxes are Φ1 = 7.5 × 109 cm−2s−1and Φ2 =
2.4 × 1011 cm−2s−1 at T1 and T2, respectively. Regard-
ing the large surface of the powder fuel it is reasonable
to suppose that the free electron gas is formed near the
surfaces of grains of powder. But if a free electron gas
interacts with the LiAlH4 −Ni powder mixture applied
then the above observations can be well explained by the
electron assisted neutron exchange processes. 7

3Li has
∆− = 0.8214 MeV so it is able to lose neutron. The
∆+values of the Ni isotopes can be found in Table I.
Completing Table I with ∆+(

59
28Ni) = 3.319 MeV (the

half life of 59
28Ni is τ = 7.6×104 y) one can recognize that

the e+ 7
3Li+

A
28Ni→ e′+ 6

3Li+
A+1
28 Ni+∆ reaction has

∆ > 0 value for A = 58−61 but in the case of A = 62 the
chain of reactions breaks since in this case ∆ < 0 because
∆+(

62
28Ni) = −1.234 MeV . The 64 → 63; 61 → 62 reac-

tion of type (34) (see Table III) leads to production of
63
28Ni (τ = 100.1 y) which has ∆−(

63
28Ni) = 1.2335 MeV

allowing and coupling transition 63 → 62 to transitions
58 → 59; 59 → 60; 60 → 61 and 61 → 62 in reaction (34).
These facts explain the enrichment of 62

28Ni and
6
3Li and

the depletion of 7
3Li and Ni isotopes of A = 58− 61 and

64. (Reactions (34) too contribute to the enrichment of
62
28Ni (see Table III).)

V. CONCLUSION

It is thought that, in principle, the electron assisted
processes are able to answer the questions raised in the
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introduction. The exchange of the original, extremely
small Coulomb factor to the Coulomb factor of order of
unity of the electron in electron assisted processes an-
swers problem (a). The electron assisted nuclear reac-
tions and the reactions which are coupled with them are
not accompanied by the expected nuclear end products
answering problem (b). Problem (c), the asserted ap-
pearance of nuclear transmutations is partly answered in
Section IV.C. with the aid of charged particle assisted
and usual nuclear reactions.
Summarizing, the theoretical results expounded and

their successful applications in explaining some unre-
solved experimental facts inspire us to say that the study-
ing of charged particles electron assisted nuclear reac-
tions, especially the electron assisted neutron exchange
processes may start a renaissance in the field of low en-
ergy nuclear physics.

VI. APPENDIX

A. Initial, intermediate and final states of electron
assisted neutron exchange process

Let Ψi, Ψµ and Ψf denote the space dependent parts
of initial, intermediate and final states, respectively. The
initial state has the form

Ψi(xe,x1,xn1,x2) = ψie (xe)ψi1n(x1,xn1)ψi2(x2),
(54)

where

ψie (xe) = V −1/2e(ikie·xe) and ψi2(x2) = V −1/2e(iki2·x2)

(55)

are the initial state of the electron and the nucleus A2

Z X ,
and ψi1n(x1,xn1) is the initial state of the neutron and

the initial A1−1 nucleon of the nucleus A1

Z X . xe, x1,xn1

and x2 are the coordinates of the electron, the center of
mass of the initial A1−1 nucleon, the neutron and the nu-
cleus A2

Z X , respectively. kie and ki2 are the initial wave

vectors of the electron and the nucleus A2

Z X and V is the
volume of normalization. The initial state ψi1n(x1,xn1)
of the neutron and the initial A1−1 nucleon may be given
in the variables R1, rn1

ψi1n(R1, rn1) = V −1/2 exp(iki1 ·R1)Φi1 (rn1) (56)

where R1 is the center of mass coordinate of the nu-
cleus A1

Z X and rn1 is the relative coordinate of one of
its neutrons. R1 and rn1are determined by the usual
xn1 = R1 + rn1 and R1 = [(A1 − 1)x1 + xn1] /A1 rela-
tions where xn1 and x1 are the coordinates of the neu-
tron and of the center of mass of the initial A1 − 1
nucleon, respectively. The inverse formula for x1 is
x1 = R1 − rn1/ (A1 − 1). In (56) the Φi1 (rn1) is the
wave function of the neutron in the initial bound state
of nucleus A1

Z X , ki1is the initial wave vector of nucleus
A1

Z X .

The intermediate state has the form

Ψµ(xe,x1,xn1,x2) = ψfe (xe)ψµ1n(x1,xn1)ψi2(x2),
(57)

where

ψfe (xe) = V −1/2e(ikfe·xe) (58)

with kfe the wave vector of the electron in the final state
and ψi2(x2) is given in (55). The state ψµ1n(x1,xn1) is

the product of two plane waves ψf1(x1) = V −1/2e(ik1·x1)

and ψn (xn1) = V −1/2eikn·xn1 , which are the final state of

the nucleus A1−1
Z1

X and the state of the free, intermediate

neutron. Thus ψµ1n(x1,xn1) = V −1eik1·x1eikn·xn1 and it
has the form in the coordinates R1, rn1

ψµ1n(R1, rn1) = V −1ei(k1+kn)·R1e
i
(

kn−
k1

A1−1

)

rn1 , (59)

where k1 and kn are the wave vectors of the nucleus
A1−1
Z X and the neutron, respectively.
The intermediate state may have an other form

Ψµ(xe,x1,xn1,x2) = ψfe (xe)ψf1(x1)ψµ2n(xn1,x2),
(60)

where

ψµ2n(xn1,x2) = ψn (xn1)ψi2(x2) = V −1eikn·xn1eiki2·x2

(61)
which can be written in the coordinates rn2 = xn1 −R2

and R2 = (A2x2 + xn1) / (A2 + 1) as

ψµ2n(R2, rn2) =
1

V
ei(ki2+kn)·R2e

i
(

kn−
ki2
A2

)

rn2 , (62)

where R2 is the center of mass coordinate of the nucleus
A2+1
Z X and rn2 is the relative coordinate of the neutron
in it. In these new variables x2 = R2 − rn2/A2 and
xn1−x2 = (A2 + 1) rn2/A2 which is used in the argument
of V St (given by (12)) in calculating V St

fµ . Evaluating the

matrix elements V Cb
µi and V St

fµ the forms (59) and (62) of

ψµ are used, respectively, and
∑

µ → V
(2π)3

d3kn in (14).

The final state has the form

Ψf (xe,x1,xn1,x2) = ψfe (xe)ψf1(x1)ψf2n(xn1,x2),
(63)

where ψf2n(xn1,x2) is given in the variables R2, rn2 as

ψf2n(R2, rn2) = V −1/2 exp(ik2 ·R2)Φf2 (rn2) , (64)

and Φf2 (rn2) is the bound state of the neutron in the

nucleus A2+1
Z X .

B. Evaluation of matrix elements V Cb
µi and V St

fµ

The argument of the Coulomb potential V Cb is xe−x1

therefore the integration with respect to the components
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of x2 may be carried out and
∫
|ψi2(x2)|2 d3x2 = 1. The

remainder is

V Cb
µi =

∫
ψ∗

fe (xe)ψ
∗

µ1n(x1,xn1)V
Cb (xe − x1) (65)

×ψie (xe)ψi1n(x1,xn1)d
3xed

3x1d
3xn1.

Making the x1,xn1 → R1, rn1 change in the variables,
substituting the forms (56) and (59) of ψi1n and ψµ1n,
and neglecting ki1, the integrations over the compo-
nents of xe and R1 result V −1 (2π)

3
δ (q+ kie − kfe)

and V −3/2 (2π)
3
δ (q− k1 − kn), respectively and the in-

tegration over the components of rn1 produces F1 (kn)
where

F1 (kn) =

∫
Φi1 (rn1) e

−i
(

kn−
k1+q

A1−1

)

·rn1d3rn1. (66)

Using the δ (q+ kie − kfe) in carrying out the integra-
tion over the components of q in V Cb

µi one gets

V Cb
µi = − Ze2

2π2 |kfe − kie|2 + λ2
F̃1 (kn)

(2π)
6

V 5/2
× (67)

×
√
GSδ (kie − kfe − k1 − kn)

and

F̃1 (kn) =

∫
Φi1 (rn1) e

−i
(

kn−
k1+kfe−kie

A1−1

)

·rn1d3rn1.

(68)
For particles e and 1 (ingoing electron of charge −e and

initial nucleus A1

Z X of charge Ze) taking part in Coulomb
interaction we have used plane waves therefore the matrix
element must be corrected with the so called Sommerfeld
factor [13]

√
GS where

GS =
Fe(Eie)

Fe(Ef1)
. (69)

Now we deal with V St
fµ . The strong interaction works

between the neutron and the nucleons of the nucleus A2

Z X
therefore the argument of V St is xn1 − x2. The integra-
tions with respect to the components of xe and x1 result∫
|ψef (xe)|2 d3xe =

∫
|ψf1(x1)|2 d3x1 = 1. The remain-

der is

V St
fµ =

∫
ψ∗

f2nV
St (xn1 − x2)ψµ2nd

3x2d
3xn1. (70)

Similarly to the above, making the xn1,x2 → R2, rn2
change in the variables, substituting the forms (62) and
(64) of ψµ2n and ψ∗

f2n and neglecting ki2, the integrations

over the components ofR2 result V
−3/2 (2π)

3
δ (kn − k2)

and the integrations with respect to the components of
rn2 produces F2 (kn) with

F2 (kn) =

∫
Φ∗

f2 (rn2) e
ikn·rn2 × (71)

×
(
−f

exp(−sA2+1
A2

rn2
A2+1
A2

rn2

)
d3rn2,

where rn2 = |rn2|. Taking into account that the neutron
interacts with each nucleon of the final nucleus of nucleon
number A2

V St
fµ =

(2π)
3

V 3/2
A2F2 (kn) δ (kn − k2) . (72)

C. Transition probability per unit time of electron
assisted neutron exchange process

Substituting the obtained forms of V Cb
µi and V St

fµ (for-

mulae (67) and (72)) into (14) and using the correspon-
dence

∑
µ → V

(2π)3
d3kn and the δ (kn − k2) in the inte-

gration over the components of kn one gets

Tfi = −
e2ZA2F̃1 (k2)F2 (k2)

√
Fe(Eie)
Fe(Ef1)

2π2 |kfe − kie|2 + λ2
× (73)

× (2π)
6

V 3

δ (k1 + k2 + kfe − kie)

(∆Eµi)kn=k2

,

where

F̃1 (k2) =

∫
Φi1 (rn1) e

−i
(

k2−
k1+kfe−kie

A1−1

)

·rn1d3rn1 (74)

and F2 (k2) is determined by (26). Here Φi1 and
Φf2 in (26) are the initial and final bound neu-
tron states. Substituting the above into (13),

using the identities [δ (k1 + k2 + kfe − kie)]
2 =

δ (k1 + k2 + kfe − kie) δ (0) and (2π)
3
δ (0) = V ,

the
∑

f → ∑
m2

∫ [
V/ (2π)

3
]3
d3k1d

3k2d
3kfe correspon-

dence, averaging over the quantum number m1 and
integrating over the components of kfe (which gives
kfe = −k1 − k2 + kie) one obtains

Wfi =

∫
α2
f~c

2Z2
∑l2=m2

l2=−m2
|F2 (k2)|2

π3vcV
(
|k1 + k2|2 + λ2

)2
(∆Eµi)

2
kn=k2

(75)

×
〈
|F1 (k2)|2

〉 Fe(Eie)

Fe(Ef1)
A2

2rA2
δ(Ef −∆)d3k1d

3k2,

where A1, A2 are the initial atomic masses, l1,m1 and
l2,m2 are the orbit and its projection quantum numbers
of the neutron in its initial and final state. For F1 (k2),〈
|F1 (k2)|2

〉
and F2 (k2) see (24), (25) and (26). Taking

into account the effect of the number of atoms of atomic
number A2 in the solid target the calculation is similar
to the calculation of e.g. the coherent neutron scattering
[14] and the |Tfi|2 must be multiplied by NL which is the
number of atomic sites in the crystal and by rA2

which is

the relative natural abundance of atoms A2

Z X . We have
used NL/V = 2/vc with vc the volume of the elementary
cell of the fcc lattice in which there are two lattice sites
in the cases of Ni and Pd investigated.
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D. Approximations, identities and relations in
calculation of cross section

Now we deal with the energy denominator (∆Eµi) in
(75) and (23) [see (15)− (22)]. The shielding parameter
λ is determined by the innermost electronic shell of the
atom A1

Z X and it can be determined as

λ =
Z

aB
, (76)

where aB = 0.53 × 10−8 cm is the Bohr-radius. The
integrals in (75) and (23) have accountable contributions
if

|k1 + k2| . λ (77)

and then Efe . ~
2λ2/ (2me) =

1
2α

2
fmec

2Z2 which can be
neglected in ∆Eµi and in the energy Dirac-delta. Thus

∆Eµi =
~
2k2

1

2m1
+

~
2k2

2

2mn
−∆− +∆n (78)

and in the Dirac-delta

Ef =
~
2k2

1

2m1
+

~
2k2

2

2m2
. (79)

In this case k1 = −k2 + δk with |δk| = δk ∼ λ. Using

k1 ≃ k2 ≃ k0 =
√
2µ12∆/~ (80)

(see below) with µ12c
2 = A12m0c

2, where A12 =
(A1 − 1) (A2 + 1) / (A1 +A2) is the reduced nucleon
number, one can conclude that the k2 = −k1 relation
fails with a very small error in the cases of events which
fulfill condition (77) since k1/k0 ≃ 1, k2/k0 ≃ 1, δk/k0 ∼
λ/k0 and λ/k0 = αfZmec

2/
√
2µ12c2∆ ≪ 1. Conse-

quently, the quantity Ef in the argument of the energy
Dirac-delta can be written approximately as

Ef =

(
~
2

2m1
+

~
2

2m2

)
k2
2 =

~
2c2k2

2

2A12m0c2
. (81)

Furthermore taking A1/ (A1 + 1) ≃ 1

∆Eµi =
~
2c2k2

2

2m0c2
−∆− +∆n. (82)

We introduce the Q = ~ck2/∆, P = ~c (δk) /∆, εf =
Ef/∆ =

[
Q2/

(
2A12m0c

2
)]

∆ and L = ~cλ/∆ dimen-
sionless quantities. The energy Dirac-delta modifies as
δ(Ef −∆) = δ [εf (Q)− 1] /∆. The relation (76) yields
L = ~cZ/ (aB∆) = Zαfmec

2/∆ and Zαfmec
2/∆ . 1.

Now we change d3k1d
3k2 to

(
∆
~c

)6
d3Qd3P in the inte-

gration in (23), use the δ [g (Q)] = δ (Q−Q0) /g
′ (Q0)

identity, where Q0 is the root of the equation g (Q) = 0
(k0 = Q0∆/ (~c), see (80)), estimate the integral with
respect to the components of P by

∫
∞

0

4πP 2dP

(P 2 + L2)
2 =

π2

L
(83)

and apply vc = d3/4 (the volume of unit cell of fcc lattice
for Ni and Pd of lattice parameter d).

E.
〈

|F1 (k0)|
2
〉

Sh
and

∑l2=m2

l2=−m2
|F2 (k0)|

2

Sh in single
particle shell-model and without LWA

Now we calculate the quantities
〈
|F1 (k0)|2

〉

Sh
and

∑l2=m2

l2=−m2
|F2 (k0)|2Sh in the single particle shell model

with isotropic harmonic oscillator potential and without
the long wavelength approximation (see definitions: (24),
(25) and (26)). Taking into account the spin-orbit cou-
pling in the level scheme the emerging neutron states are
0l and 1l shell model states in the cases of Ni and Pd
to be discussed numerically [15]. So the initial and final
neutron states (Φi1,Φf2) have the form

ΦSh (rnj) =
Rnj lj

rnj
Yljmj

(Ωj) (84)

where nj = 0, 1 in the cases of 0l and 1l investigated,
respectively, and

R0lj = b
−1/2
j

(
2

Γ(lj + 3/2)

)1/2

̺
lj+1
j exp

(
−1

2
̺2j

)
,

(85)

R1lj = b
−1/2
j

(
2lj + 3

Γ(lj + 3/2)

)1/2

̺
lj+1
j × (86)

×
(
1− 2

2lj + 3
̺2j

)
exp

(
−1

2
̺2j

)

with ̺j = rnj/bj where bj =
√
~/ (m0ωj) [15]. Here ωj is

the angular frequency of the oscillator that is determined

by ~ω1 = 40A
−1/3
1 MeV and ~ω2 = 40 (A2 + 1)

−1/3

MeV [16]. (The subscript Sh refers to the shell model.)
With the aid of these wave functions and for n1 = 0, 1

〈
|F1 (k0)|2

〉

Sh
= b31

2l1+2

√
π (2l1 + 1)!!

4πI21,n1
(87)

with

I1,0 =

∫
∞

0

̺l1+2jl1(k0b1
A1

A1 − 1
̺)e−

1
2
̺2

d̺ (88)

and

I1,1 =

(
l1 +

3

2

)∫
∞

0

̺l1+2

(
1− 2

2l1 + 3
̺2
)
× (89)

×jl1(k0b1
A1

A1 − 1
̺)e−

1
2
̺2

d̺.

Here jl1(x) =
√

π
2xJl1+1/2(x) denotes spherical Bessel

function with Jl1+1/2(x) the Bessel function of first kind.
Similarly

l2=m2∑

l2=−m2

|F2 (k0)|2Sh = b2f
2 2

l2+2 (2l2 + 1)√
π (2l2 + 1)!!

× (90)

×4π

(
A2

A2 + 1

)2

I22,n2
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with

I2,0 =

∫
∞

0

̺l2+1jl2(k0b2̺)e
−

1
2
̺2

−
A2+1

A2

b2
r0

̺
d̺ (91)

and

I2,1 =

(
l2 +

3

2

)∫
∞

0

̺l2+1

(
1− 2

2l2 + 3
̺2
)
× (92)

×jl2(k0b2̺)e−
1
2
̺2

−
A2+1

A2

b2
r0

̺
d̺.

Substituting the results of (87), (90) and (27) into (29)
one gets

ηl1,n1,l2,n2
(A1, A2) =

2l1+l2+4

π (2l1 + 1)!! (2l2 + 1)!!
× (93)

×b
3
1b2
r40

(
A2

A2 + 1

)2

I21,n1
I22,n2

.

F. Coulomb factors F2′3 and F34 in electron assisted
heavy charged particle exchange process

If initial particles have negligible initial momentum
then, because of momentum conservation, k2′ = −k5 in
the final state. (It was obtained [7] that the process has
accountable cross section if the momentum of the final
electron can be neglected, i.e. in the k1′ ≃ 0 case.) Thus
the condition of energy conservation

~
2k2

2′

2m2′
+

~
2k2

5

2m5
= ∆ (94)

determines k2′ as

~
2k2

2′ = 2µ2′5∆, (95)

where ~ is the reduced Planck-constant,

µ2′5,= a2′5m0c
2 (96)

is the reduced rest mass of particles 2′ and 5 of mass
numbers A2′ and A5 [for a2′5 see (5)]. If the initial
momenta and the momentum of particle 1′ are negligi-
ble then k3 = −k2′ , since momentum is preserved in
Coulomb scattering. Thus the energy E3 of particle 3
can be written as

E3 =
~
2k2

3

2m3
=
µ2′5

m3
∆ =

a2′5
A3

∆. (97)

Calculating the Coulomb factor F2′3 [see (3)] between
particles 2′ and 3 the energy determined by (97) is given
in their CM coordinate system (since k3 = −k2′) thus it
can be substituted directly in (4) producing

η2′3 = (Z2 − z3) z3αfA3

√
A2′ +A5

(A2′ +A3)A5

m0c2

2∆
. (98)

Since the above analysis is made in order to discuss the
phenomenon of nuclear transmutation we take A3 ≪
A2′ ≃ A5 = A (& 100 in the case of Pd discussed).
So (A2′ +A5) / [(A2′ +A3)A5] ≃ 2/A and η2′3 reads ap-
proximately as

η2′3 = (Z2 − z3) z3αfA3

√
m0c2

A∆
. (99)

Calculating the Coulomb factor F34, the energy of parti-
cle 3 determined by (97) is now given in the laboratory
frame of reference since particle 4 is at rest. In the CM
system of particles 3 and 4 the energy E3(CM) is

E3(CM) =
A4a2′5∆

(A3 +A4)A3
. (100)

Substituting it into (4)

η34 = (Z4 + z3) z3αfA3

√
m0c2

2a2′5∆
. (101)

Applying the same approximation as above in which
2a2′5 ≃ A

η34 = (Z4 + z3) z3αfA3

√
m0c2

A∆
. (102)

Furthermore, if Z2 ≃ Z4 = Z ≫ z3 then

η2′3 = η34 = Zz3αfA3

√
m0c2

A∆
, (103)

consequently, F2′3 = F34.
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